Roll No.

Total No. of Pages: 02 Total No. of Questions: 07

BCA (Sem.-2nd) MATHEMATICS-I(DISCRETE MATHS)

Subject Code: BC-203 Paper ID: [B0207]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATE:

- 1. Section-A is compulsory
- 2. Attempt any four questions from section-B

SECTION-A

- **Q.1.** (a) If A and B are any two sets, then $(A \cap B)^C = A^C \cap B^C$
 - (b) Define reflexive and transitive relation with an example.
 - (c) For non empty sets A and B, prove that $AxB = BxA \Leftrightarrow A=B$
 - (d) Find n if p(2n, 3) = 100 p(n, 2)
 - (e) Define Eulerian and Hamiltonian graph.
 - (f) Construct a truth table for pvq
 - (g) Solve the recurrence relation.

$$S(n+2)-6S(N+1)+9S(N)=0$$

- (h) Using principle of mathematical induction prove that $1+3+5+\cdots+(2n-1)=n^2$
- (i) Define the out degree and in degree of a vertex V'
- (j) Define equivalence relation.

SECTION-B

- **Q.2.** If A, B, C are any three sets, then prove that
 - a) $Ax (B \cap C) = (Ax B) \cap (AxC)$
 - b) $(A \cap B) \times C = (A \times C) \cup (B \times C)$
- **Q.3.**(a) Find the number of different 8- letter words formed from the letters of word. TRIANGLE if each word is to have Consonants never together

- (b) The number of diagonal of a polygon is 20 find the number of its sides
- **Q.4.**(a) Show the equivalence of the following

$$d \rightarrow (\sim a) \land b) \land c$$
 and $\sim (av(\sim (b \land c) \land d))$

- Set $f: R \rightarrow R$ be defined by f(x) = 2x + 3(b)
 - (i) Find f^{-1} (ii) Find the domain of f^{-1}
- **Q.5.**(a) Show that $(p \land q) \land \sim (p \land q)$ is a fallacy.
 - (b) Solve the recurrence relation:

$$S(k) -7S(k-1) + 10 S(k-2) = 6+8k$$

Where
$$S(0) = 1$$
, $S(1) = 2$

- **Q.6.**(a) Show that maximum numbers of edges in graph with n- vertices and no multiple edges are $\frac{n(n-1)}{2}$
 - Prove that chromatic number of graph C_n where C_n is the cycle with 'n' vertices is either (b) 2 or 3

SECTION-C

- Determine the sequence whose generating function is $G(S,Z) = \left(\frac{3-5z}{1-2z-3z^2}\right)$ **Q.7.**(a)
 - (b) Prove by mathematical induction that

$$\frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} - - - - + \frac{1}{(2n+1)(2n+3)} = \frac{n}{3(2n+3)}$$

.....END.....